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6. CHAPTER 1 – INTRODUCTION 
 

 

1.1. Overview      

Shield-driven tunneling using Tunnel Boring Machines (TBM) has become a popular underground 

construction technique in various geological conditions with minimal surface disruptions. The 

advantage of using such technology is that while excavating, the TBM is placing a tunnel liner of 

sequential rings composed of precast segments (Figure 1). The advancement of machine is 

powered by thrust cylinders while an erector places the interlocking segments. Thrust load depends 

on type of soil and other factors such as groundwater pressure. However, the typical thrust load 

for excavating in soft soil conditions is 10 to 20 percent of the total TBM thrust (Galvan et al. 

2017). Another important component of the TBM is the cutterhead which is located at the frontal 

contact area of the machine during excavation process. Configuration of the cutterhead and its 

performance depends on many factors including cutter type, spacing of the cutters, cutterhead 

shape and balance of the head (Rostami and Chang, 2017). Cutter rotation speed and cutterhead 

speed are two of the notable TBM performance parameters that are collected continuously during 

the excavation. The later parameters as well as the other machine operational information such as 

advancement speed, thrust force and articulation force are recorded and stored for each tunneling 

project. However, only a portion of this data are utilized by the TBM operators mostly during the 

excavation to advance the machine along the designated alignment. Real-time sequential 

estimation of such information can significantly improve the operational performance and avoid 

any unpredicted encounters.  

 

 

Figure 1 – a) Structure and Components of a Tunnel Boring Machine (www.railsystem.net), b) 

Hierarchical structure of the tunnel rings composed of precast segments (Yi et al. 2019) 
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Although a TBM is capable of excavating under different subsurface conditions, the complexity 

and uncertainty of geological conditions ahead of the machine can infer substantial construction 

delays as well as unforeseen damages to the cutter head and other TBM components. The 

geological profile and geotechnical conditions along the tunneling alignment are highly 

uncertain due to the limited sampling rates during site investigation, e.g., borehole spacings of 

50-200 m. With pressure balance shield TBMs, project personnel are unable to see the 

encountered ground conditions while tunneling; there is no access to the face. The inability to 

identify and characterize the as-encountered ground makes it difficult to optimize the tunneling 

process. Further, differing site condition claims and disputes are common on tunnel projects; 

however, with no clear understanding of the actual ground conditions encountered, such claims 

and disputes become problematic to resolve. To this end, there is significant incentive to 

develop methodologies that can characterize the ground using the TBM data. 

The first objective is to develop advanced data mining and novel machine learning based methods 

for predicting or detecting ground conditions using the data collected before and during the TBM 

operations. The second objective is to design and develop data-driven predictive models that can 

predict the TBM state and status in real-time as well as adverse events and anomalies. The system 

keeps updating the predictive model as new information are introduced to the model. A recurrent 

neural networks (RNN), which is a modified version of artificial neural network (ANN) was 

developed. 

 

1.2. Prediction of TBM Performance and State 

A number of studies in the literature were focused on predicting the operational parameters of 

TBM as well as information relevant to geological environment along the tunneling alignment 

(Mooney et al. 2012). Some of these efforts were limited to a specific ground conditions and 

environmental factors while some others showed limited ability to estimate the as-encountered 

TBM operational parameters. TBM performance prediction models are generally classified in 

three groups: theoretical models based on laboratory tests, empirical models based on field 

performance of TBM (Hasanpour et al. 2016) and data-driven models based on as-encountered 

operation parameters during excavation. Although there are several studies in the literature focused 

on developing and updating the first two types of models, only few studies were dedicated to 

develop data-driven algorithms with minimal dependency on empirical parameters.  

Toth et al. (2013) analyzed TBM performance in various conditions to understand environmental 

impact on TBM performance. They focused on addressing the inability of models to predict 

penetration rate in mixed ground conditions by analyzing performance in homogeneous 

conditions. Prediction of penetration rate have been popular in recent TBM predictive analysis 

techniques, as the feature is an important part of understanding excavation performance. However, 

due to the limitation of prediction model to a specific geological composition, a lot more data is 

needed to generalize the model to be applicable to a variety of underground conditions. They found 

direct correlations between penetration rate and geological parameters but claim that additional 

research will be required to find out if the penetration rate was solely affected by the geological 

features or it relies on the experience of machine operators.  
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Avunduk et al. (2018) developed a process to predict the excavation performance based only on 

soil properties. They showed accuracy in predicting cutterhead performance and thrust force based 

on single-variate and multi-variate analysis of soil and clay composition with a simple regression 

model. Bilgin et al. (2012) analyzed TBM preformance based on rock and soil composition in 

fractured rock formations. They developed a model using a stochastic estimator and a Monte Carlo 

simulation for predicting performance in clay-heavy ground. However, they found that the 

applicability of the model in other geological conditions is limited. The developed model, although 

accurate in predicting the penetration rate, fails to estimate cutterhead torque and thrust with 

similar accuracy. These features are important to understand TBM performance as they reflect the 

machine ability to excavate.  

Farrokh et al. (2012) reviewed the accuracy of models in predicting TBM performance with neural 

networks using basic mechanical data and found that the model does not propose reasonable 

predictions compared to traditional methodologies. They also concluded that most existing 

predictive models, both traditional and computer-aided, cannot offer accurate estimates of TBM 

performance on new excavations without significant re-training. They suggest that this is due to a 

lack of inclusion of important parameters, and that an accurate record of operational parameters 

from a variety of test sites could help in improving the reliability of prediction models.  

Salimi et al. (2015) employed a number of artificial intelligence techniques to predict the 

advancement rate and other performance parameters of the TBM using the data extracted from two 

hard rock tunneling sites. Those techniques include principle component analysis (PCA) as a pre-

processing approach and artificial neural networks (ANN), adaptive neuro-fuzzy inference system 

(ANFIS) and support vector regression (SVR) to develop the prediction models. They evaluated 

the performance of prediction models using root mean square error (RMSE), variance account for 

(VAF), and mean absolute percentage error (MAPE). Their study found that although all prediction 

models showed acceptable performance, the SVM method outperformed the other two models. 

However, only one parameter known as field penetration index (FPI) was predicted under limited 

ground conditions.   

One of the main objectives of this project was to evaluate the possibility of implementing a 

recurrent neural network (RNN), a machine learning technique, to predict some of the operational 

parameters of TBM, using earlier operating data during the excavation process. We extracted TBM 

data from a tunneling project in North America that involved construction of a double parallel set 

of tunnels. Our study also evaluates the possibility of applying training data from one tunnel to 

another with both minimal and nonexistent re-training.  

 

1.3. Prediction of Geological Composition 

Due to the uncertainties involved with tunneling and unknown properties of earth layers that could 

delay the tunnel construction process and impose extra cost in terms of cutterhead replacement or 

repairs, TBM monitoring has been the focus of several studies over the past few decades. Several 

studies have focused on developing in-situ geophysical and imaging techniques to estimate the 

unanticipated geological conditions along the tunneling path. As one of the early stages of such 

attempts, Kneib et al. (2000) developed a methodology for automatic seismic prediction ahead of 

the tunnel boring machine. Both sources and receivers were mounted on the cutterhead for optimal 
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spatial coverage. The sonic soft-ground probing (SSP) system excites a high frequency P-wave 

that is recorded by mounted accelerometers. The setup yields a three-dimensional reflection image 

of the ground condition ahead of cutting wheel. However, at the time of that study, several 

challenges such as the need for real time signal processing, limited computational power and 

relatively high noise levels due to construction process hindered the implementation of such 

system. Kaus and Boening (2008) introduced a non-intrusive electrical induced polarization 

technique that predicts the ground conditions while TBM is operating. The Bore-Tunneling 

Electrical Ahead Monitoring (BEAM) allows for prediction of earth layers about three times the 

diameter ahead of TBM cutter head. It is capable of early detection and warning of geological and 

geotechnical ground conditions as well as real-time visualization of earth layer classifications. The 

system minimizes the need for geotechnical baseline report borehole data to estimate and 

reconstruct the geological layer combinations. However, the additional components of the data 

acquisition system should be mounted on the cutter head as well as the TBM operating center to 

visualize the process.  

Mooney et al. (2012) reviewed the state of the art in real-time TBM monitoring. They include a 

comprehensive list of different methods and approaches that are mostly focused on in-situ and 

geophysical techniques implemented at the tunnel face. Those methods include passive monitoring 

of TBM interaction with tunnel face, acoustic reflection, electrical resistivity, cutterhead 

monitoring, backfill grout monitoring, and muck monitoring. The emphasis on look-ahead 

techniques with seismic, acoustic and electrical methods is highlighted in that review. Schaeffer 

and Mooney (2016) performed an experimental and computational investigation of electrical 

resistivity imaging for prediction ahead of TBM. That study presented real-time and continuous 

imaging solution to extract more information along the tunneling direction. Such tools can help 

detecting the unpredicted changes in earth layer properties ahead of cutterhead that could impose 

construction delays and excessive costs of maintenance and repairs. The study was focused on 

laboratory scale experiments and showed the potential of detecting most changes ahead of TBM 

even in high electrical noise.   

Although experimental and geophysical prediction of earth conditions ahead of TBM cutterhead 

have been investigated in several studies in the literature, the use of data-driven approaches is 

relatively more recent. A few of those studies are employing traditional statistical methods while 

the most recent ones are employing advanced prediction models such as machine learning and 

deep neural networks. Zhao et al. (2019) proposed a data-driven framework for tunnel geological-

type prediction based on TBM operating data. They proposed a real-time process that first converts 

the discontinuous operating information to continuous displacement data and then augments TBM 

features using first and second order difference method. The developed artificial neural network 

predicts multiple geological layer properties using physical and mechanical indices. Those indices 

include natural severity, internal friction angle, deformation modulus, Poisson's ratio, coefficient 

of lateral pressure, permeability coefficient, and cohesive strength between rock mass and anchors. 

The authors show that the developed algorithm outperforms conventional statistical prediction 

models such as random forest, support vector regression and K-nearest neighbors. The main source 

of geological data exploration in this study was from boreholes along the tunnel length and use the 

ring sections corresponding to the location of drilling for training the algorithm. The authors later 

conclude that use of more advanced outlier detection methods as well as using other training 

algorithms could help improve the accuracy of the prediction model.  
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Maher (2013) presented a machine learning approach to predict penetration rate in earth pressure 

balance (EPB) tunnel boring machines. Two methods used for feature selection were Guided 

Regularized Random Forests (GRRFs) and Stepwise Forward Feature Selection (SFFS). However, 

a combination of multiple linear regression and support vector regression was employed to perform 

the predictions using the features selected with SFFS and GRRF. The application of these methods 

showed that some of the selected features based on data-driven approach were not previously 

considered as identified by lab experiments in the literature.  

Shi et al. (2018) compared the statistical learning methods with deep neural networks (DNN) to 

predict the geological conditions based on TBM operating data. They applied a DNN model to a 

set of TBM data with 53 attributes that were measured continuously at a 1 Hz frequency. The 

developed model was then employed to predict 7 geological layers along the tunneling direction. 

The reported accuracy of the developed technique was optimal for some layers and relatively poor 

for the other geological layers. However, the performance of the model was superior compared to 

conventional statistical methods such as random forest, k-nearest neighbor and linear regression. 

The authors employed a combination of algorithms to avoid over-fitting, minimizing the loss 

function and fixing the unbalanced data layers.  

The state of practice in tunnel boring process is to estimate subsurface geological and geotechnical 

layer information by drilling several boreholes along the estimated tunnel path. The data extracted 

from boreholes reflect precise information about the soil type at different depths and the location 

of transition layers as documented in the geotechnical data report (GDR). However, the profile of 

earth layers between borehole locations is still unknown. Therefore, the geological profile 

produced and typically provided in the geotechnical baseline report (GBR) carries significant 

uncertainty. Several geospatial analysis methods have been developed in the literature for three-

dimensional visualization of subsurface geological layers. However, all of the aforementioned 

models are associated with some level of uncertainty that impacts the risk involved with 

underground tunneling. An example of interpolating geological data at borehole locations is using 

kriging algorithm (Oliver and Webster, 1990). Figure 2 shows an example of interpolating 

borehole data and three-dimensional visualization of tunnel alignment through geological layers 

estimated from borehole data.  

Several studies in the literature have focused on geospatial analysis of geological earth layers from 

drilled borehole data. Kavoura et al. (2016) studied three-dimensional geological modelling from 

borehole data using geographic information system (GIS) and remote sensing. A digital surface 

model was developed to represent the geological layer properties between borehole locations. 

Xiong et al. (2017) proposed a three-dimensional multi-scale geology modelling methodology for 

risk assessment of tunneling. They used the hermit radial basis function and Monte Carlo 

simulation for dynamic risk evaluation during tunneling operations. Their model includes several 

scales including regional sub-model for preliminary evaluation and outcrop scale for dynamic 

evaluation. Although their model showed significant success in risk management of a tunneling 

case study, they recommend that there is a need for advanced geological data prediction.   

Among methods that are mostly implemented for geospatial correlation of georeferenced data (i.e. 

borehole drilling location) kriging is an efficient and accurate geostatistical algorithm. It generates 

an estimated surface from scatter data points. This interpolation method weights the neighboring 

measurements to predict an unmeasured location as follows: 
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�̂�(𝑠0) = ∑ 𝜆𝑖𝑍(𝑠𝑖)
𝑛
𝑖=1        (1) 

 

where Z(si) is the measured values at location i, s0 is the prediction location, n is the number of 

measured locations, and i is the unknown weight for the measured value at location i. The 

accuracy of the predicted values is measured with semivariance defined as the squared difference 

between the values of paired locations.  

One of the main objectives of this project was to develop a real-time prediction algorithm that can 

predict the geological and geotechnical properties of earth layers ahead of TBM cutter-head during 

a tunneling operation using information from boreholes and operational TBM data. The process of 

data extraction, pre and post-processing, model development and testing of the developed model 

is presented in the following sections.  
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(a)  

(b)  

 

Figure 2 – (a) Interpolation of geological data to generate tunneling operation data (after Sun et al. 

2018), (b) 3D visualization of tunnel alignment with borehole geotechnical data (after Ozmutlu 

and Hack, 2003), (c) Integration of data-driven model for prediction of geological information 

(after Zhao et al. 2019) 
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7. CHAPTER 2 – DATA PROCESSING 
 

7.1. Datasets 

The data used in this project was extracted from the Seattle Northgate Link Extension tunneling 

project in North America. The dataset includes 30 GB of data samples collected from a Hitachi 

Zosen TBM during the boring process. The Northgate Link Extension will extend service north 

from the University of Washington to the University District, Roosevelt, and Northgate 

neighborhoods by 2021, and is expected to cost approximately $2.1 Billion. Most of this 6.9 km 

extension will be underground and includes the construction of 5.6 km of twin Earth pressure 

balance (EPB) tunnels. Also included are the excavations of the Maple Leaf Portal (MLP) where 

the light rail will transition from tunnels to elevated guide-way and two large underground station 

boxes, one for the University District Station (UDS) and one for the Roosevelt Station (RVS). The 

N125 tunnels are excavated through glacial and non-glacial sediments of the Puget Trough 

deposited during the Quaternary and Holocene periods. The Quaternary sediments are generally 

overconsolidated due to several glaciations, while the recent Holocene sediments are normally 

consolidated. The Engineering Soil Units (ESU) defined for this study are Engineering and Non-

Engineered Fill (ENF), Recent Granular Deposits (RGD), Recent Clays and Silts (RCS), Till and 

Till-Like Deposits (TLD), Cohesionless Sand and Gravel (CSG), Cohesionless Silt and Fine Sand 

(CSF), and Cohesive Clay and Silt (CCS). ENF, RGD, and RCS are recent, normally consolidated 

sediments, whereas TLD, CSG, CSF, and CCS are glacial, overconsolidated sediments (Northlink 

Tunnel Partners, 2009). Figure 3 shows the geological profile of the project. 

The prediction targets (output labels) for this dataset are the percentage of each soil component 

within the TBM tunnel envelope during excavation. The total composition includes the following 

four geomaterial types: Cohesive Clay and Silt (CCS), Cohesionless Silt and Fine Sand (CSF), 

Cohesionless Sand and Gravel (CSG), and Till-Like Deposits (TLD). The sum of CCS, CSF, CSG 

and TLD layer percentages at all times is assumed to be 100 percent. Since the construction 

sequence is evaluated by each tunnel ring, one set of labels is generated per tunnel ring. Only a 

few tunnel rings intersect with the location of drilled boreholes where the geological composition 

is accurately measured. Those rings were used for training the model. The following sections 

explains the process of selecting features and extracting the required data from the TBM dataset.  

 

7.2. Feature Extraction and Selection for Geological Composition  

The TBM dataset includes both operational parameters and sensor measurements. In total, about 

1000 data elements are recorded in 5-second time intervals. We extracted and selected a set of 

features from the raw data to be used in the predictive model. The selected features include, 

cutterhead torque normalized by average excavation chamber pressure, total thrust force 

normalized by average chamber pressure, screw conveyor torque normalized by average screw 

conveyor pressure, foam injection volume, additive injection volume, cutterhead revolution speed, 

screw conveyor revolution speed, TBM advance rate, average chamber pressure, apparent muck 

unit weight, screw conveyor pressure, average shield pressure, and front body rolling rate 
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normalized by shield pressure. The data samples collected during excavation of each ring can be 

aggregated and represented by a new set of statistical features. In this approach, the statistical 

changes in sensor measurements will be reflected as new features while allowing for the interval 

to change from a time-based interval to ring-based interval. The statistically derived features are 

kurtosis, skewness, maximum, minimum, mean, median, standard deviation, quartiles, and 

pairwise approximation aggregate. 

 

 

Figure 3. Geological profile of the tunneling project 

 

   The drilled boreholes contain the actual geological composition. Chainage was used to 

match rings with boreholes, so that the TBM features could be associated with the accurate 

geological borehole sampling at the appropriate ring location. To keep the sampling as relevant as 

possible to the tunnel, only boreholes within 200 feet of the tunnel were selected. Ordering those 

borehole-associated rings allowed the construction of a continuous series of rings as a training set. 

The rings not associated with boreholes were then used as an evaluation dataset. The following 

section include the steps taken for preprocessing of the input feature before training the model.  

Principal Component Analysis (PCA) algorithm is widely used in machine learning processes to 

reduce the dimensions of the large datasets. PCA uses an orthogonal transformation to convert a 

set of possibly correlated variables into a set of linearly uncorrelated values called principal 

components (Ding and He, 2004). The feature matrix (𝑋𝑡𝑟𝑎𝑖𝑛) is first normalized using min-max 

scaling with the range (R) from  -1 to 1. The transformation used to scale (𝑋𝑡𝑟𝑎𝑖𝑛) is then applied 

to (𝑋𝑡𝑒𝑠𝑡) matrix. PCA is used to further reduce the dimensionality of the scaled (𝑋𝑡𝑟𝑎𝑖𝑛), and the 

transformation is then applied on the scaled matrix (𝑋𝑡𝑒𝑠𝑡). 
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    𝑋𝑠𝑡𝑑  =
𝑋−𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛 
       (2)  

 

𝑋𝑠𝑐𝑎𝑙𝑒𝑑 = 𝑋𝑠𝑡𝑑 ∗ (𝑅𝑚𝑎𝑥 − 𝑅𝑚𝑖𝑛) + 𝑅𝑚𝑖𝑛      (3) 

 

where Xstd = standard deviation of the feature, Xmax = maximum value for the feature, Xmin = 

minimum value for the feature, and Xscaled = scaled feature. 

  

The transformation derived and applied to the training matrix is also applied to the testing matrix. 

The input shape passed into the model is: 

𝑆 × 𝑇 × 𝐹        (4) 

where S represents the number of samples, T is the number of time steps of model, and F is the 

number of features (the details are provided in the following section). The features matrices  

𝑋𝑡𝑟𝑎𝑖𝑛 and 𝑋𝑡𝑒𝑠𝑡 only have 𝑆 × 𝐹 dimensionality and must be further modified by adding the time 

dimension. This is accomplished by using the features from previous samples as the time steps. 

However, the labels (𝑦) are not part of the feature space (see Table 1).  

 

Table 1 – Sequence of time steps and labels 

  Time Step  Label 

𝐹𝑡−2  𝐹𝑡−1, 𝐹𝑡 𝑦𝑡 

𝐹𝑡−1  𝐹𝑡, 𝐹𝑡+1 𝑦𝑡+1 

𝐹𝑡  𝐹𝑡+1, 𝐹𝑡+2 𝑦𝑡+2 

⋮ ⋮ 

𝐹𝑛−2  𝐹𝑛−1, 𝐹𝑛 𝑦𝑛 

 

 

7.3. Feature Extraction and Selection for TBM Performance and State 

To prevent tautological bias, a correlation heatmap was created to identify features which were 

directly mapped to one another. Certain features which were being derived directly from other 

sources were removed to prevent any overlap or bias between features and labels. Some TBM 

sensors collected data per ring rather than collecting continous operation data similar to other TBM 

sensors, which generated an irregularity in sampling rate. To address this issue, several statically 

derived features were calculated based on the collected data within each ring to aggregate and 

compress their information and append it to the ring they were associated with. The statistical 
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features derived from the intra-ring samples were mean, median, range, max, min, kurtosis, 

skewness, standard deviation, and quartiles. 

Addition of each of these features per TBM sensor compensated for the loss of high-

definition that had been provided by the intra-ring samples, while matching the sampling rate to 

that of the lower-rate sensors. The feature data is then normalized to avoid any scaling concerns 

(1).  

The TBM operation data processed through a Recurrent Neural Network (RNN) to predict 

performance parameters. The key characteristic of the RNN is its ability to take samples in 

previous timesteps and utilize that data to predict the samples in the future. In order to do this, the 

data is reshaped into a three dimensional matrix, with dimensions: features, samples, and time 

steps. Figure 4 shows the schematic of data format. 

 

 

Figure 4.  Input Data format for RNN model 

 

The prediction for time t is made only based on previous timesteps t-3, t-2, and t-1. This 

approach enables the model to predict features denoted by labels ahead of the machine at the future 

timestep t. In this study, we utilized 3 previous timesteps, since passed that threshold, noise will 

be added to the data. This approach was applied to both datasets. The availability of two datasets 

for the adjacent tunnels can be used to verify the results of trained model. By utilizing the same 

neural network structure on both tunnels, and verifying the same levels of accuracy, we were able 

to determine if the model could be applicable to a different excavation environment.  

Another application is the ability of the network to derive generalized inferences which can 

be applied to other tunnels with minimal, or even zero, training. If the model can train on one 

tunnel and apply the training to the other tunnel without even having been exposed to the other 

tunnel conditions, it would have derived intra-sensor relations in a manner such that it is entirely 

environment independent. Such a result would imply that this model can be used to improve and 

predict TBM performance on new tunnels with near zero prior data collection from the new 
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worksite. The model could predict accurately having only trained on prior excavations, without 

being re-trained on the new environment. Eliminating the need for prior analysis, or at least 

reducing it, greatly advances current construction techniques.  

To evaluate these scenarios, the model undergoes 4 experiments. First, it is trained and 

tested only on a data split of the first tunnel. Second, it is trained and tested on a split of the second 

tunnel to verify the adaptability of the model structure. Third, it is trained on the first tunnel and 

tested on the second tunnel without ever having trained on any data from the second tunnel. Finally, 

the model utilizes all the data from the first tunnel and a minimal amount of data from the second 

tunnel (<15%) to attempt to achieve results comparable to having been trained only on that tunnel. 
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8. CHAPTER 3 – PREDICTIVE MODEL 
 

8.1. Predictive Model for TBM Performance and State Prediction 

The data is used to train an Artificial Neural Network (ANN). An ANN is generally used to model 

complex relationships between variables, using a multilayer system with weighted connections. 

The model is trained on the provided data to adjust both the layers as well as the weights between 

layers. Standard ANNs are incapable of handling temporal connections. Thus, in this study we use 

Recurrent Neural Networks (RNN), a subcategory of ANN, for their ability to model time-based 

connections using a memory system. In this case, the temporal connection is between the past 

samples and the current one, as they are directly related to one another. Figure 5 shows the structure 

of an RNN. 

 

 

Figure 5. Structure of a recurrent neural network (RNN) 

 

Each of the recurrent neurons within the recurrent layer can be structured differently 

depending on the type of RNN. In this case, a Gated Recurrent Unit (GRU) is used. GRU is a 

relatively simple recurrent neuron, and one of the more recent developments in this subcategory. 

It acts as a set of memory cells, each with an input gate and a “forget” gate. The cell remembers 

information to train the network. The input gate filters the information to be added to the cell while 

the forget gate chooses information to drop. This allows the cell to derive long-term relations 

between values while avoiding overly specific short-term relations. This is especially critical in 

our application (tunneling data), where simple performance relations may be present in a certain 

subset of geological environment, but not present in the overall pattern. To avoid allowing the 

predictive system to fall into these sub-relations, rather than finding an overall pattern, the forget 

system is important to the model. 

Another model that was employed was the Long Short-Term Memory Network (LSTM). 

LSTM adds an additional “output” gate to the GRU cell, to filter the information outflow. 
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However, the additional complexity of the LSTM necessitates a larger amount of training data. 

The GRU handles the reduced quantity of data better, as it is a simple system with less mechanisms 

to train. Figure 6 visualizes the difference between an LSTM and GRU unit. 

 

 

Figure 6. A comparison of GRU and LSTM recurrent neurons. 

 

To assess the model’s performance, we split the data into training and validation sets. This 

separation is defined prior to the reshaping to prevent any overlap or relationship between the two 

sets, ensuring the model is only predicting between features, rather than connecting the training 

data directly to testing. Separating prior to reshaping prevents any of the past timesteps in the early 

samples of the validation data overlapping with the late samples in the training set. Therefore, 

some of the early samples in the validation set must simply be dropped as they do not have enough 

past samples from their own validation set to be reshaped. To avoid a lack of testing data, the 

separation point must be adjusted to favor the validation set more than the standard split.  

A search through various optimizers and models showed that the ideal optimizer and error 

loss for this particular system was the Adam optimizer with an MAE error loss. To handle the 

relative lack of data, a Gaussian noise filter is introduced during the training stage. The validation 

set, however, only uses the actual values from the machine. The predictions are then evaluated 

using Root Mean Squared Error (RMSE). 

 

8.2. Predictive Model for Geological Composition Prediction 

The sequential estimation of geological composition are performed using an Artificial Neural 

Network (ANN). ANNs are able to model complex non-linear relationships between several input 

features and output labels using a set of pseudo variables in middle hidden layers. In this study, 

the output labels are percentages of each soil type in the tunneling profile. In a basic feedforward 

ANN, the layers are connected using weighted links. During the training phase, the network 

updates the weights to find the best fit with the training data. 
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 Since our dataset contains both spatial and temporal correlations, a regular feedforward ANN 

cannot properly trained to perform predictions. To address this concern, the TBM data was treated 

as a time series dataset. Then, a modified type of ANN, known as Recurrent Neural Networks 

(RNN) that is ideal for learning and predicting patterns in time series data, was developed. RNNs 

are a type of ANN that hold an internal state. The weights are not updated past the training phase 

but the states change with every prediction and then both are used to make the next prediction. 

This allows RNNs to make predictions on sequential data with greater accuracy than traditional 

neural networks.  

 To accommodate for sequential nature of the tunneling data, a specific type of RNNs known 

as Long Short-Term Memory (LSTM) was employed in this study. LSTMs are able to hold onto 

much longer temporal relationships due to the ability to forget irrelevant information and use parts 

of its internal state to make predictions. By discarding irrelevant information, the RNN-LSTM is 

able to use more important parts of the internal state to make predictions without additional noise 

from patterns existing in other temporal segments that do not apply over the long term. RNN-

LSTM use mechanisms that help decide what information is relevant to store and to use in making 

future predictions. The information that is not important does not alter the internal state as much 

as it would in a normal RNN. However, the relevant parts of the state are used to make the 

prediction, similar to a normal RNN. Figure 7 illustrates a schematic structures of a regular 

feedforward ANN compared to RNN.  

 

 

a)           b)  

 

Figure 7. General topographical difference between a) ANN, b) RNN  

 

 

Walk-forward validation is used to assess the performance of the model for the testing 

dataset. It takes a part of dataset to optimize the system and then use another part to validate. As 

noted in the previous section, the predicted labels (𝑦) will not be included in the feature space. 

Instead we will depend on the stateful nature of an LSTM and use previous states to help make 

future predictions. The state of the LSTM is built up using the training data as a starting point and 

is maintained between predictions to make future predictions. The training tunnel rings are located 

within various chainage from each other but are treated sequentially for model training purposes. 

However, treating all of the training rings as continuous adjacent samples introduces variance to 

the model. This means that the training data is noisier than the testing data.  
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A portion of the testing data is used for validation and adjusting the neural network 

parameters. Selection of validation data better reflects how the model will perform on the testing 

data. We used Grid Search algorithm, also known as hyperparameter optimization or tuning, on a 

set of preliminary models to select the best optimizer and loss function for the RNN as well as 

other hyperparameters (Claesen and Moor, 2015). A hyperparameter is a value used for controlling 

the learning process only.  Based on initial evaluations, the Adam Optimizer algorithm (Kingma 

and Ba, 2014), which is used to update network weights in training process, was selected for the 

optimization process and Mean Squared Error (MSE) was selected as the loss function. In every 

subsequent model we trained, the Adam optimizer is used during the backpropagation process. 

MSE is defined as follows: 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦 − �̂�)2𝑛

𝑖=1       (5) 

where 𝑦 is the actual value of the label and 𝑦̂ is the predicted value. Root Mean Squared Error 

(RMSE) is used to check the performance of the neural network defined as follows: 

𝑅𝑀𝑆𝐸 =  √𝑀𝑆𝐸       (6) 

The noise introduced to the model during the training phase is present during the 

predictions on the testing data. To evaluate the results on testing data, Moving Average (MA) was 

employed as a low pass filter to accommodate for the noise that is expressed in the raw predictions. 

MA of ring n and ring n+1 are defined as follows:  

𝑅𝑛 =
𝑅𝑛−1+𝑅𝑛−2+𝑅𝑛−3+⋯+𝑅𝑛−𝑙

𝑙
=

1

𝑙
∑ 𝑅𝑛−𝑖

𝑙
𝑖=0      (7) 

𝑅𝑛+1 = 𝑅𝑛 +
𝑅𝑛+1

𝑙
−

𝑅𝑛−𝑙

𝑙
      (8) 

where 𝑙 is the moving average size, and 𝑅𝑛 is the nth ring. The normalized predications are then 

converted back to the original scale. For prediction n:  

𝐶𝑆𝑆𝑛

𝐶𝑆𝑆𝑛+𝐶𝑆𝐹𝑛+𝐶𝑆𝐺𝑛+𝑇𝐿𝐷𝑛
× 100 = 𝐶𝑆𝑆𝑛      (9) 

𝐶𝑆𝐹𝑛

𝐶𝑆𝑆𝑛+𝐶𝑆𝐹𝑛+𝐶𝑆𝐺𝑛+𝑇𝐿𝐷𝑛
× 100 = 𝐶𝑆𝐹𝑛      (10) 

𝐶𝑆𝐺𝑛

𝐶𝑆𝑆𝑛+𝐶𝑆𝐹𝑛+𝐶𝑆𝐺𝑛+𝑇𝐿𝐷𝑛
× 100 = 𝐶𝑆𝐺𝑛      (11) 

𝑇𝐿𝐷𝑛

𝐶𝑆𝑆𝑛+𝐶𝑆𝐹𝑛+𝐶𝑆𝐺𝑛+𝑇𝐿𝐷𝑛
× 100 = 𝑇𝐿𝐷𝑛      (12) 

 

where 𝐶𝑆𝑆𝑛 + 𝐶𝑆𝐹𝑛 + 𝐶𝑆𝐺𝑛 + 𝑇𝐿𝐷𝑛 is equal to 100. 

 

 



   

UTC-UTI  24 
 
 

9. CHAPTER 4 – RESULTS AND DISCUSSION 
 

9.1. Prediction Results for TBM Performance and State  

The model underwent four scenarios. Training and testing on the first tunnel, training and testing 

on the second tunnel, training only on the first tunnel data and then testing on the second tunnel, 

and finally training on the first tunnel and a small (<15%) portion of the second tunnel data and 

then testing on the remainder of the second tunnel dataset. 

The results of the model performance in predicting key features of the first tunnel are 

displayed in Figure 8, compared against the actual machine outputs. The RMSE values for each of 

the variables are displayed in Table 2, along with the normalized RMSE (RMSE divided by the 

mean of the parameter). This is necessary since the machine outputs are measured at different 

scales and need a scale independent metric.  

 

 

 

Figure 8. Comparisons of predictions against actual sensor outputs at future rings. The predictive 

model is trained and tested on separate datasets from the first tunnel. 
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Table 2 – Results of the model trained and tested on the first tunnel alone 

Predicted Feature RMSE NRMSE 

Advance Speed (mm/min) 10.78 0.159 

Articulation Force (kN) 1201.99 0.171 

Cutterhead Speed (rpm) 0.026 0.226 

Cutter Rotation Speed 

(rpm) 

0.472 0.22 

Thrust Force (kN) 3385.84 0.366 

 

 

Prediction of critical features such as advance speed, thrust force, and articulation force 

showed noticeable results. Estimation of these features could be used to inform and improve the 

operation of the TBM. Since each of these predictors is running on the same dataset consisting of 

the past inputs, with no change being made per label, these predictions can all be run 

simultaneously to the same degree of accuracy, meaning that the predictor can provide an entire 

view of all the parameters as they will appear at the next ring.  The model shows exceptional 

abilities in terms of predicting sensor features, particularly considering that it is doing so without 

the knowledge of the other sensor data at the same ring. The model holds its performance quite 

consistently throughout several runs.  

The same tests were performed on the model being trained and tested only on the second 

tunnel. Figure 9 and Table 3 provide the results, which are quite similar in scope and accuracy to 

the results of the first scenario. 
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Figure 9. Predictions versus actual values. The predictive model is trained and tested on separate 

datasets from the second tunnel. 

 

Table 3 – Results of training and testing only on the second tunnel 

Predicted Feature RMSE NRMSE 

Advance Speed (mm/min) 9.34 0.166 

Articulation Force (kN) 2144.4 0.283 

Cutterhead Speed (rpm) 0.209 0.259 

Cutter Rotation Speed (rpm) 0.457 0.212 

Thrust Force (kN) 2606.23 0.248 

 

In the third experiment, the model was trained on the entirety of the first tunnel and 

approximately 150 rings of the second tunnel, leaving about 900 rings for validation. In order to 

give a balanced comparison to the model evaluated in the second scenario, this model is not tested 

on all 900 rings, but only on the last 100 rings, the same ones that second would have evaluated 

upon. Figure 10 and Table 4 shows the prediction results and accuracy. 
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Figure 10. Predictions of the model having been trained on the first tunnel plus less than 15% of 

the second tunnel. 

 

Table 4 – Results of training on the whole of the first tunnel and less than 15% of the 

second tunnel, predictions on the portion of the second tunnel used in past tests. 

Predicted Feature RMSE NRMSE 

Advance Speed (mm/min) 11.63 0.207 

Articulation Force (kN) 1180.16 0.155 

Cutterhead Speed (rpm) 0.205 0.2536 

Cutter Rotation Speed (rpm) 0.478 0.221 

Thrust Force (kN) 2483.43 0.236 

 

Finally, the model was trained only on the first tunnel data and tested on the second tunnel 

dataset. In order to give a balanced comparison to the model evaluated in test 2 and 3, this model 

is tested on the last 100 rings, the same ones that scenario 2 and 3 would have evaluated upon. 

Figure 11 provides the results of several key features, and Table 5 provides key metrics on these 

results. 
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Figure 11. Predictions based on model training only on the first tunnel and testing only on the 

selected portion of the second tunnel used in Figure 8. 

 

Table 5 – Results of training on the first tunnel and testing on the second. 

Predicted Feature RMSE NRMSE  

Advance Speed (mm/min) 8.10 0.144 

Articulation Force (kN) 1366.66 0.180 

Cutterhead Speed (rpm) 0.248 0.308 

Cutter Rotation Speed 

(rpm) 

0.56 0.263 

Thrust Force (kN) 2073.474 0.197 
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9.2. Prediction Results for Geological and Soil Composition  

Figure 12a shows the prediction results for soil composition using the proposed model with a 

trained RNN-LSTM containing three hidden layers. It is important and interesting to notice that 

the proposed method (RNN-LSTM method) does not use the bore-hole data as input information 

to make prediction for the soil composition. It only uses the Shield Tunnel Boring Machine Data 

as input features. However, the predictions are comparable to the Kriging interpolation values, 

which are derived based on bore-hole samples (Figure 12b). In other word, the machine learning 

model has discovered a correlation between TBM data and soil composition, and learned to use it 

to predict the soil composition a head of TBM, even without any prior information about the 

geological composition (i.e. without using prior borehole data). Figure 13 shows the RNN-LSTM 

prediction results during the boring process for each soil composition (i.e., CCS, CSF, CSG, TLD). 

In Figures 12 and 13, the vertical axis shows the percent of the soil composition, and the horizontal 

axis shows the ring number. It is very important to notice that this figure compares the RNN-

LSTM prediction method versus the Kriging interpolation. However, none of them are the ground 

truth (in this case, the actual ground truth soil conditions are unknown).  

 

 

 

 

 

 

 



 

     
Figure 12. Stack plot of component predictions from a) the proposed RNN-LSTM, and b) 

Kriging interpolation from borehole data. 

 

 

 

The ability of the RNN-LSTM to make predictions on individual components is notable (Figure 

13). Even when the magnitude of the changes is different the model captures the pattern changes 

very well.  
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Figure 13. Individual earth layer estimations from RNN-LSTM model compared to labeled data 

from Kriging interpolation of borehole data. 
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10. CHAPTER 5 – SUMMARY AND CONCLUSION 
 

This research project focuse on the applications of data science, machine learning, and big data 

analytics in the construction, maintenance and performance of the underground transportation 

infrastructure. The first objective of this project is to develop advanced data mining and novel 

machine learning based methods for predicting or detecting ground conditions and geological 

composition using the data collected before and during the TBM operations. The second objective 

was to design and develop data-driven predictive models that can predict the TBM state, 

performance, and status in real-time. 

The inability to identify and characterize the as-encountered ground for excavations using 

Pressure balance shield tunnel boring machines (TBM) makes it difficult to optimize the 

tunneling process. There is significant incentive to develop methodologies that can characterize 

the ground using the large volume of data collected during TBM operation. With the recent 

advancements in artificial intelligence and machine learning for solving complex problems, there 

is a potential for applications in tunneling using TBM data. The first objective of this study was to 

develop an advanced machine learning algorithm that is capable of sequentially estimating the 

geological composition of earth layers encountered by the TBM during tunneling. The data used 

in this project was extracted from the Seattle Northgate Link Extension tunneling project in North 

America. The prediction targets for this dataset were the percentage of each soil component within 

the TBM tunnel envelope during excavation. The prediction model was developed using an 

Artificial Neural Network (ANN). Due to the sequential nature of the TBM operation, the collected 

data was treated as a time series. Therefore, a specific type of ANN known as Recurrent Neural 

Network (RNN), Long Short-Term Memory (LSTM), was employed in this study.  

It is important to notice that the proposed RNN-LSTM method only uses the TBM data as input 

features to make prediction for the soil composition (it does not directly use bore-hole data as input 

information). However, the comparison of model-estimated as-encountered geological 

composition of the earth layers with interpolated data from actual borehole samples shows an 

agreement on the soil composition and pattern. In other word, the proposed RNN-LSTM model 

has discovered a correlation between TBM data and soil composition, and learned to use it to 

predict the soil composition, even without any prior information about the geological composition 

(i.e. without using prior borehole data). The performance of the model in terms of mean squared 

error was comparable with interpolated data. Since the common practice is only relying on 

interpolated borehole data during TBM operation, it cannot provide the unpredicted ground 

conditions between borehole locations that can infer additional cost due to project delays and 

equipment maintenance. Comparing the model estimations for each individual soil type with 

provided labels show even a higher accuracy in most cases. The prediction performance of the 

model can be further improved by providing more training data with higher level of details 

regarding the geological and geotechnical parameters of the tunneling alignment.  

The second objective of this project was to design and develop data-driven predictive models that 

can predict the TBM state, performance, and status in real-time. The results of this project suggest 

that utilizing recurrent neural networks would allow for prediction of critical excavation 

performance evaluation features at future states. The structure of the model appears to be 

applicable to different tunneling zones, as verified by the application of the model to two different 
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tunnels. In addition, the model proved to be accurate in applying learning from one tunnel to 

another despite the two having different soil composition. Providing light re-training even allowed 

it to outperform the model fully trained on the tunnel from where the testing data came. Prediction 

of critical features such as advance speed, thrust force, and articulation force showed noticeable 

results. The model shows exceptional abilities in terms of predicting sensor features, particularly 

considering that it is doing so without the knowledge of the other sensor data at the same ring. The 

model holds its performance quite consistently throughout several runs. The success of the model 

implies a transferability of training of the RNN predictive model. Such generalization is a feature 

that will be very useful in optimizing the TBM operation.   
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12. APPENDIX A – TECHNOLOGY TRANSFER ACTIVITIES 
 

1 Accomplishments  

 

• Developed novel prediction techniques based on advanced machine learning for predicting or 

detecting ground conditions and soil composition using the data collected before and during the 

TBM operations.  

• Designed and developed data-driven predictive models that can predict the TBM state and 

performance in real-time (during the boring process) as well as adverse events in UTI such as 

structural defects, and anomalies. 

• We bublished a journal paper in The Journal of the Transportation Research Board 2020 

• One UTC-UTI student Presented his research in TRB conference 2020 

• One UTC-UTI student Presented her research in Women in Data Science Conference 2020 

• Two UTC-UTI students Presented her research in Cal State LA DIRECT STEM workshop  

• We have been reaching out to LA Metro Rail, collected new big datasets for training modeling, 

and validating the developed algorithms, and also discussed potential collaborations, discussed 

potential project detail.  

• Mohammad Pourhomayoun received new grants from NASA for projects focusing on various 
applications of AI in Urban Sustainability. 

• Mohammad Pourhomayoun received new grants from Sikand Foundation focusing on various 
applications of AI in Urban Sustainability. 

 

1.1 What was done? What was learned?  

 

In this project, we have developed and applied Data Science, Artificial Intelligence, and big data 
analytics techniques for construction and maintenance of the underground transportation 
infrastructure. The first objective of this project was to develop data mining and machine learning 
methods for predicting or detecting ground conditions. The second objective was to design and 
develop data-driven predictive models and Artificial Intelligence (AI) techniques to predict the TBM 
state and status in real-time. The third objective was to design and develop predictive models and AI 
techniques to predict future adverse events in UTI such as structural defects and anomalies, and 
defect progression and consequences over time. We learned that data science and AI can be beneficial 
tools and techniques to improve the performance, quality, and efficiency of construction and 
maintenance of the underground transportation infrastructure. They can let us predict important 
parameters and states, and also predict unexpected adverse events during the construction or 
afterwards. 

 

 

1.2 How have the results been disseminated? 

 

• We published a journal paper in The Journal of the Transportation Research Board 2020 
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• One UTC-UTI student Presented his research in TRB conference 2020 

• One UTC-UTI student Presented her research in Women in Data Science Conference 2020 

• Two UTC-UTI students Presented her research in Cal State LA DIRECT STEM workshop  

 

2 Participants and Collaborating Organizations 

Name: LA Metro 

Location: Los Angeles, CA 

Contribution: Collaborations with LA Metro Rail, collected new big datasets for training modeling, 

and validating the developed algorithms, and also discussed potential collaborations, discussed 

potential project detail.  

 

3 Outputs  

Journal publications 

K. Nagrecha, L. Fisher, M. Mooney, E. Alavi, T. Rodriguez-Nikl, M. Mazari, M. Pourhomayoun, “As-
Encountered Prediction of Tunnel Boring Machine Performance Parameters Using Recurrent Neural 
Networks,” The Journal of the Transportation Research Board, July 2020. 
(https://doi.org/10.1177/0361198120934796) 

Presentations 

K. Nagrecha, L. Fisher, M. Mooney, E. Alavi, T. Rodriguez-Nikl, M. Mazari, M. Pourhomayoun, “As-
Encountered Prediction of Tunnel Boring Machine Performance Parameters Using Recurrent Neural 
Networks,” Transportation Research Board Annual Conference (TRB 2020), July 2020. 

Workshops 

L. Fisher, K. Nagrecha, T. Rodriguez-Nikl, M. Mazari, M. Pourhomayoun, “Real-Time Prediction of 
Geological Composition using Recurrent Neural Networks and Shield Tunnel Boring Machine Data,” 
Cal State LA DIRECT STEM workshop 2020. 

E. Estrada Medina, K. Nagrecha, T. Rodriguez-Nikl, M. Mazari, M. Pourhomayoun, “Prediction of Soil 
Composition using Artificial Neural Networks,” Women in Data Science workshop 2020. 

4   Outcomes 

We have developed novel prediction techniques for predicting or detecting ground conditions and 

soil composition using the data collected before and during the TBM operations. We have also 

designed and developed data-driven predictive models that can predict the TBM state and 

performance in real-time (during the boring process) as well as adverse events in UTI such as 

structural defects, and anomalies. They can let us predict important parameters and states, and also 

predict unexpected adverse events during the construction or afterwards. 

 

 

https://doi.org/10.1177/0361198120934796


   

UTC-UTI  38 
 
 

5 Impacts 
The developed systems and methods are significantly effective in improving the performance, 
quality, and efficiency of construction and maintenance of the underground transportation 
infrastructure.  
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13. APPENDIX B - DATA FROM THE PROJECT 
 

Table1: Sample sensor data used to develop and train machine learning models 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

1 2 12.2 2.065 2.55333333 0.24 11454 11 

2 2 16.6925 2.1625 5.56 0.51 9984 19 

3 2 20.5125 1.545 4.76 0.345 8852 28 

4 2 28.315 1.4425 4.56 0.235 10436 33 

5 2 39.0175 1.2475 4.9 0.185 11503 42 

6 2 18.125 1.9225 4.45333333 0.355 9240 23 

7 2 18.295 1.73 3.76666667 0.285 9574 22 

8 2 16.89 1.5575 3.64666667 0.295 8729 23 

9 2 14.0275 2.1975 2.32666667 0.175 8703 18 

10 2 19.645 1.5625 3.37333333 0.225 10196 23 

11 2 22.125 1.585 4.65333333 0.31 10480 25 

12 2 19.55 0.9675 5.18 0.4 11314 20 

13 2 22.3175 1.85 4.79333333 0.32 11319 23 

14 2 27.28 1.175 5.18666667 0.29 11786 28 

15 2 27.6075 1.35 5.33333333 0.295 11971 28 

16 2 24.9775 2.5 5.78666667 0.36 11321 26 

17 2 16.88 0.625 3.05333333 0.23 11207 17 

18 2 25.625 1.75 6.33333333 0.39 10189 31 

19 2 26.3675 1.125 5.67333333 0.33 11080 29 

20 2 30.335 0.61 5 0.245 11265 33 

21 3 40.575 0.625 5.80666667 0.22 11138 46 

22 3 26.8825 0.2875 4.82 0.265 9307 36 

23 3 26.915 0.585 5.56666667 0.32 8224 41 

24 3 29.045 0.625 5.22666667 0.275 8698 42 

25 3 29.305 0.265 4.44 0.22 10915 33 

26 3 36.4775 0.4125 5.29333333 0.22 9958 46 

27 3 34.1325 0.3275 4.94 0.215 10963 39 

28 3 34.3325 0.5925 5.72 0.26 10169 42 

29 3 32.9275 0.6225 5.14 0.235 9020 46 

30 3 28.0875 0.45 4.85333333 0.255 9784 35 

31 3 29.8825 0.39 5.3 0.27 10376 35 

32 3 32.1475 0.4525 6.26 0.305 9763 41 

33 3 27.9075 0.1975 4.30666667 0.22 8363 41 
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Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

34 3 32.32 0.26 5.29333333 0.25 8927 45 

35 3 38.815 0.5675 6.36 0.26 9645 51 

36 2 28.675 0.625 6.3 0.345 8374 43 

37 2 23.625 0.61 6.03333333 0.4 7984 36 

38 2 21.26 0.8375 4.68 0.325 7685 34 

39 2 30.7325 0.525 5.20666667 0.255 9527 40 

40 2 30.485 0.515 5.52 0.28 10368 36 

41 2 29.07 0.47 5.21333333 0.27 9968 36 

42 2 31.3075 0.345 4.74666667 0.225 10441 37 

43 2 30.9525 0.595 5.64 0.28 9900 39 

44 2 34.03 0.5725 5.36 0.24 10386 41 

45 2 34.7125 0.54 5.19333333 0.225 10758 40 

46 2 36.4525 0.7 6.40666667 0.28 10700 42 

47 2 29.0575 1.5375 5.22666667 0.275 9125 39 

48 2 26.2625 0.7825 6.4 0.385 8188 40 

49 2 26.2975 0.8175 6.16666667 0.37 8365 39 

50 2 19.74 1.295 5.18 0.395 8626 28 

51 2 20.1075 0.81 5.82 0.45 9058 27 

52 2 19.1875 0.7825 5.77333333 0.465 9092 25 

53 2 16.4125 0.66 4.62666667 0.415 9728 19 

54 2 16.215 0.79 4.38 0.39 10803 17 

55 1 14.4825 0.8825 3.88666667 0.375 12152 13 

56 1 17.265 0.9 5.34 0.47 12745 15 

57 1 16.925 0.99 5.6 0.51 12180 16 

58 1 12.0275 0.8025 2.56666667 0.245 11154 11 

59 1 15.565 0.765 4.72 0.45 10674 16 

60 1 16.17 0.77 5.96 0.575 9493 20 

62 1 15.785 0.89 5.98666667 0.59 8896 21 

63 1 17.1625 1.33 6.30666667 0.58 8993 22 

64 1 16.005 1.405 5.86666667 0.57 8854 21 

65 1 14.4 1.5625 5.77333333 0.62 8825 19 

66 1 12.7175 1.575 5.02666667 0.595 9149 16 

67 1 12.905 0.845 6.1 0.74 9537 15 

68 1 12.6175 1.06 6.12666667 0.76 9638 14 

69 1 13.09 1.39 6.08 0.73 9883 15 

70 1 14.2025 1.3475 6.04666667 0.665 10310 15 

71 1 15.4375 1.0075 6.24 0.635 10736 16 
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Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

72 1 15.75 1.0875 6.2 0.62 11204 16 

73 1 15.49 1.065 5.68666667 0.565 11758 15 

74 1 14.2025 0.58 4.52666667 0.465 12685 12 

75 1 13.1075 1.06 5.14 0.59 13133 10 

76 1 15.03 1.155 5.60666667 0.575 12577 13 

77 1 15.385 1.0625 5.84 0.59 11428 15 

78 1 16.19 1.395 6.20666667 0.605 12482 14 

79 1 16.3375 1.5425 6.32666667 0.61 13161 14 

80 1 15.6775 1.625 6.21333333 0.625 12939 13 

81 1 15.925 2.09 6.34 0.63 12967 13 

82 1 14.3075 2.3475 5.82 0.63 11869 13 

83 1 17.1525 2.0175 6.14 0.56 11398 17 

84 1 18.775 2.205 6.42 0.54 12317 17 

85 1 16.3 1.3725 5.48 0.515 11643 16 

86 2 15.5525 0.82 4.98 0.48 12435 14 

87 2 16.5125 0.72 4.66666667 0.415 13201 14 

88 2 17.6 0.8325 5.08 0.435 13075 15 

89 2 18.3775 0.355 3.34666667 0.24 13377 15 

90 2 20.995 0.8725 4.79333333 0.34 12637 19 

91 2 27.8475 0.9475 6.5 0.37 11173 30 

92 2 25.875 0.68 6.36 0.39 10093 31 

93 2 27.36 0.7175 6.39333333 0.37 10268 33 

94 2 25.0825 0.5825 6.31333333 0.395 9866 31 

95 2 24.15 0.82 6.30666667 0.41 9237 32 

96 2 29.955 0.73 6.55333333 0.345 9005 41 

97 2 34.3125 0.535 6.11333333 0.28 9993 43 

98 2 33.2275 0.63 6.2 0.295 10549 39 

99 2 32.8725 0.9625 5.94666667 0.28 9400 44 

100 2 33.265 0.58 6.43333333 0.305 8761 48 

101 2 28.1025 0.3475 4.56666667 0.24 8808 40 

102 2 39.84 0.5075 5.77333333 0.225 10399 48 

103 2 37.7375 0.265 4.96 0.195 10029 47 

104 2 36.9875 0.305 5.95333333 0.25 9705 48 

105 2 27.6775 0.185 2.88 0.125 8416 41 

106 2 34.2675 0.1875 4.23333333 0.175 9418 46 

107 2 31.0325 0.36 5.19333333 0.255 10097 38 

108 2 18.825 0.545 3.59333333 0.26 7256 32 
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Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

109 2 23.155 0.88 6.30666667 0.43 8221 35 

110 2 22.705 0.6725 6.28 0.435 8480 33 

111 2 24.11 0.59 6.00666667 0.39 8667 34 

112 2 29.415 0.7175 6.12666667 0.325 9391 39 

113 2 25.92 0.445 3.64666667 0.19 8911 36 

114 2 29.1575 0.485 4.76666667 0.24 9915 36 

115 3 30.76 0.6475 6.14666667 0.315 9032 42 

116 3 29.38 0.615 6.24 0.335 8688 42 

117 3 27.65 0.6425 6.14 0.35 8817 39 

118 3 22.6675 0.8 4.05333333 0.255 9490 29 

119 3 29.0775 0.5525 6.11333333 0.33 9709 37 

120 3 32.1525 0.4925 6.30666667 0.31 9600 42 

121 3 28.935 0.46 5.56666667 0.295 9252 39 

122 3 27.4425 1.7 5.80666667 0.33 7980 43 

123 3 35.985 1.1375 5.98 0.26 9687 47 

124 3 34.4875 0.49 5.89333333 0.265 10133 42 

125 3 32.4625 0.34 6.31333333 0.305 9884 41 

126 3 27.76 0.21 5.76666667 0.32 11804 28 

127 3 26.2025 -0.0125 4.51333333 0.25 12712 24 

128 3 32.855 0.61 5.10666667 0.235 11454 35 

129 3 29.97 0.3925 5.48 0.28 10720 34 

130 2 20.1725 0.59 4.62 0.335 9273 26 

131 2 22.51 0.8225 5.45333333 0.37 9133 30 

132 2 22.1775 0.69 6.13333333 0.435 9278 29 

133 2 24.3525 0.9275 6.52 0.425 8376 36 

134 2 25.2775 0.895 6.16666667 0.385 9985 31 

135 2 20.8075 1.125 6.04 0.455 11133 22 

136 2 20.01 1.27 6.65333333 0.53 9943 24 

137 2 19.7025 1.1175 5.99333333 0.475 9904 24 

138 2 16.645 1 4.46666667 0.39 10833 17 

139 2 19.1375 1.02 6.30666667 0.52 11026 20 

140 2 21.5375 1.2175 6.30666667 0.46 10721 24 

141 2 22.1675 0.89 6.02666667 0.425 11816 22 

142 2 24.965 0.875 4.36666667 0.255 11752 25 

143 2 25.475 1.05 6.52 0.405 10652 29 

144 2 23.875 0.99 6.5 0.43 9244 31 

145 2 21.68 1.1 6.31333333 0.46 8232 32 



   

UTC-UTI  43 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

146 2 21.2475 1.19 6.46666667 0.48 7984 32 

147 2 21.965 1.1775 6.42666667 0.465 8096 33 

148 2 16.165 1.4525 5.19333333 0.485 8427 23 

149 2 20.455 1.8575 5.78666667 0.44 9676 25 

150 2 30.8575 1.6575 6.16 0.315 11137 34 

151 2 37.1925 1.1625 6.04 0.255 12543 37 

152 2 22.4575 1.0175 5.6 0.385 10242 26 

153 2 20.1075 1.86 6.16666667 0.48 9022 27 

154 2 19.27 1.8475 6.19333333 0.505 9598 24 

170 2 12.62 1.2025 5.92666667 0.73 8362 17 

171 2 17.215 1.2725 6.4 0.59 8753 23 

172 2 19.4375 1.0425 6.15333333 0.495 8951 26 

173 2 18.9425 0.9925 5.88666667 0.485 9332 24 

174 2 17.365 1.03 6.04666667 0.545 9003 23 

175 2 16.0175 1.6275 5.40666667 0.515 8756 21 

176 2 17.0675 1.3025 6.2 0.57 9709 20 

177 2 16.97 1.0725 5.89333333 0.54 10388 19 

178 2 15.4975 1.085 6.20666667 0.63 11069 16 

179 2 15.5825 1.0875 6.25333333 0.63 11280 15 

180 2 17.265 1.3225 6.47333333 0.595 10865 18 

181 2 17.87 1.17 6.35333333 0.56 10516 20 

182 2 17.435 1.255 6.42666667 0.585 9806 21 

183 2 17.3375 1.075 5.79333333 0.52 10135 20 

184 2 17.45 1.26 6.6 0.6 11036 18 

185 2 15.99 1.2725 5.92666667 0.58 10591 17 

186 2 17.4575 1.3125 6.29333333 0.57 10117 20 

187 2 17.69 1.385 6.26666667 0.56 11551 17 

188 2 16.7725 1.4475 6.18666667 0.58 10739 18 

189 2 11.23 1.225 3.78666667 0.465 8063 16 

190 2 12.3625 1.5025 3.94 0.445 7218 20 

191 2 21.0125 3.1525 6.46666667 0.49 8111 32 

192 2 15.9275 1.39 5.87333333 0.575 7126 27 

193 2 14.0325 1.61 5.57333333 0.61 7133 23 

194 1 17.1725 2.965 5.49333333 0.49 8937 23 

195 1 17.95 2.765 5.33333333 0.455 8064 27 

196 1 20.8825 3.03 6.61333333 0.505 7515 34 

197 1 22.6475 3.9525 6.18 0.43 7517 37 
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Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

198 1 16.9825 1.5 6.07333333 0.56 6618 31 

200 1 16.9625 2.51 4.34666667 0.37 7982 25 

201 1 29.2025 1.5075 5.68 0.3 8884 41 

202 1 28.0975 1.765 5.88 0.325 9571 36 

203 1 16.965 1.7475 5.38666667 0.485 8857 23 

204 1 26.1825 4.645 5.78666667 0.345 9168 35 

205 1 25.415 4.415 5.94 0.365 8669 36 

206 1 20.8825 2.9225 4.13333333 0.28 8001 32 

207 1 22.8275 3.075 4.56 0.29 7973 35 

208 1 15.7825 1.955 5.05333333 0.48 6845 28 

209 1 10.7925 1.3825 4.90666667 0.68 7042 17 

210 1 9.355 1.98 3.78 0.56 6934 15 

211 1 12.3525 4.135 4.71333333 0.565 6479 22 

212 1 20.995 3.43 4.82666667 0.34 7846 33 

213 1 29.9725 2.61 6.36666667 0.335 9057 41 

214 1 37.32 1.395 6.08666667 0.255 9596 49 

215 1 33.6325 1.01 6.09333333 0.285 9313 45 

216 1 32.99 1.095 5.96666667 0.28 9475 43 

217 1 18.65 1.72 5.07333333 0.41 8055 28 

218 1 16.535 1.23 6.28 0.6 8558 23 

219 1 17.3075 1.195 6.05333333 0.55 9987 20 

220 1 14.55 1.1875 5.55333333 0.585 9888 17 

221 1 13.3975 1.09 5.39333333 0.615 9024 17 

222 1 12.0875 0.975 5.04666667 0.63 8628 16 

223 1 11.4125 1.25 4.00666667 0.495 9487 13 

224 1 12.195 1.2575 5.85333333 0.745 10101 13 

225 1 11.8525 1.4575 6.26 0.83 9682 13 

226 1 11.0375 1.705 5.59333333 0.78 9769 12 

227 1 10.3225 1.2425 5.18666667 0.76 9442 12 

228 1 10.9025 1.2675 5.59333333 0.79 10301 11 

229 2 10.8275 1.545 5.99333333 0.865 9678 12 

230 2 12.8025 2.12 6.38 0.79 9452 15 

231 2 12.03 1.8125 5.28666667 0.67 8267 16 

232 2 13.32 1.4675 4.57333333 0.505 8769 17 

233 2 13.21 1.4175 4.76666667 0.535 8255 18 

234 2 12.1775 1.215 4.58 0.55 8736 16 

235 2 13.9875 1.375 5.35333333 0.585 9524 17 
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Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

236 2 13.5 2.03 4.48 0.485 9485 16 

237 2 15.5825 1.805 6 0.6 9872 18 

238 2 15.0375 1.6725 5.19333333 0.52 8841 20 

239 2 16.3125 1.72 5.78 0.55 8305 23 

240 2 15.2675 1.45 5.47333333 0.55 8174 22 

241 2 16.57 1.67 6.12 0.58 8245 24 

242 2 16.0525 1.56 5.74666667 0.555 7975 24 

243 2 17.015 1.4925 6.34 0.59 8918 22 

244 2 18.725 2.0875 5.77333333 0.48 9246 24 

245 2 20.2575 1.3025 6.46 0.505 8778 28 

246 2 21.3825 1.2 6.34 0.47 8138 32 

247 2 21.7625 1.1425 6.22666667 0.45 8077 33 

248 2 25.0225 1.1125 6.02666667 0.375 9045 34 

249 2 28.0975 1.01 6.36 0.36 9483 37 

250 2 26.16 0.9575 6.11333333 0.365 9634 33 

251 2 22.1675 0.7975 6.23333333 0.445 9759 27 

252 2 23.4225 0.595 5.36666667 0.35 10265 27 

253 2 18.28 0.645 3.94 0.3 10287 21 

254 2 25.25 0.92 5.94666667 0.365 12231 25 

255 2 24.3725 0.8125 5.96 0.38 12098 24 

256 2 20.91 0.5075 4.52666667 0.315 11593 21 

257 2 22.7675 0.585 4.72666667 0.305 10991 25 

258 2 21.2875 0.845 5.90666667 0.43 10892 23 

259 2 15.8875 1.5825 5.18666667 0.495 9590 19 

260 2 14.4625 1.2925 5.96666667 0.645 9435 17 

261 2 14.2325 1.34 5.83333333 0.635 9483 17 

262 2 15.1025 1.385 6.16 0.64 8797 20 

263 2 18.965 1.2475 6.23333333 0.52 9579 23 

264 2 19.2225 1.655 5.56 0.445 9369 24 

265 2 18.6175 1.285 6.14 0.52 9736 22 

266 2 15.82 1.2725 5.58 0.545 10014 18 

267 2 17.0525 1.215 5.82 0.53 10291 19 

268 2 15.51 1.185 5.55333333 0.55 11191 15 

269 2 15.1825 1.0925 5.12666667 0.51 11393 15 

270 2 15.2575 1.18 5.06666667 0.5 12173 14 

271 1 13.87 2.72 5.5 0.61 11844 13 

272 1 18.09 1.505 6.27333333 0.545 11299 18 
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Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

273 1 16.4625 1.4125 6.16666667 0.59 10414 18 

274 1 17.2625 1.525 6.22666667 0.57 10660 19 

275 1 15.49 1.455 5.94666667 0.6 10530 17 

276 1 13.9825 1.35 5.55333333 0.61 10845 14 

277 1 14.6575 1.4175 5.96666667 0.635 11327 14 

278 1 12.53 1.3475 5.74 0.71 11509 12 

279 1 11.0375 1.4525 3.48666667 0.42 11752 10 

280 1 13.9875 1.7425 5.40666667 0.59 11648 13 

281 1 11.6275 2.1825 4.04666667 0.49 9844 13 

282 1 13.4675 2.35 5.82666667 0.67 9815 15 

283 1 11.4475 1.9025 5.10666667 0.675 9511 13 

284 1 11.9775 2.0525 5.08 0.64 9212 14 

285 1 14.86 3.7425 5.02 0.505 9016 19 

286 1 15.2975 2.0875 5.74 0.58 9695 18 

287 1 15.4475 2.0325 6.22666667 0.635 10212 17 

288 1 11.51 1.695 4.31333333 0.54 9148 14 

289 1 10.415 1.795 3.76 0.495 8137 14 

290 1 11.4625 2.4325 5.11333333 0.675 7820 17 

291 1 13.6925 1.935 5.59333333 0.63 8280 19 

292 1 12.375 1.8975 5.14666667 0.63 8867 16 

293 1 13.2375 2.4775 6.22 0.74 8472 18 

294 1 13.4 2.5425 6.42666667 0.76 8118 19 

295 1 12.7525 2.5025 6.04666667 0.74 7958 18 

296 1 12.2925 3.4275 3.28666667 0.35 8113 17 

297 1 16.6125 3.4175 5.84666667 0.545 8769 22 

298 1 18.2925 2.3075 6.48666667 0.56 9738 22 

299 2 19.4725 1.3825 6.08 0.49 10943 21 

300 2 22.38 0.94 5.5 0.375 13141 20 

301 2 15.16 0.265 2.98666667 0.245 13551 12 

302 3 23.9625 0.3225 4.41333333 0.265 14407 19 

303 3 24.875 0.24 5.02666667 0.305 14449 20 

304 3 21.7825 0.0925 3.06 0.175 14349 17 

305 3 34.6975 0.3625 6.19333333 0.28 14774 28 

306 3 27.8 0.065 5.02 0.27 14811 22 

307 3 31.3525 0.285 5.88666667 0.29 13885 27 

308 3 30.8675 0.76 5.38 0.265 10581 36 

309 3 27.465 0.405 6.03333333 0.345 11134 30 



   

UTC-UTI  47 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

310 3 27.225 0.5 6.22 0.36 12064 27 

324 1 24.6225 0.6375 6.1 0.39 13930 21 

325 1 22.55 1.705 5.94666667 0.41 11800 22 

326 1 24.35 0.8475 6.2 0.4 10958 27 

327 1 23.8275 1.015 6.47333333 0.43 9238 31 

328 1 21.415 1.14 6.37333333 0.47 11385 22 

329 1 21.9075 0.9525 6.56666667 0.475 13466 19 

330 1 19.6725 1.0075 6.46 0.52 13582 16 

331 1 21.2775 1.1125 6.30666667 0.465 12980 19 

332 1 23.035 1.28 5.68666667 0.38 12747 21 

333 1 20.935 1.235 6.27333333 0.47 12342 20 

334 1 23.3025 1.1925 6.21333333 0.42 13110 21 

335 1 22.9225 0.9525 5.76666667 0.39 13922 19 

336 1 23.76 0.555 4.38666667 0.265 15075 18 

337 1 27.5 0.5225 5.05333333 0.275 14930 22 

338 1 23.2175 0.6925 4.04666667 0.245 13663 20 

339 1 20.74 1.36 5.61333333 0.415 13339 18 

340 1 17.91 1.6425 6.51333333 0.575 12695 16 

341 1 18.8375 1.76 6.58666667 0.555 11423 19 

342 1 19.725 1.605 6.66666667 0.54 10886 21 

363 1 20.8875 2.1725 6.15333333 0.465 8680 29 

364 1 21.28 2.28 6.6 0.495 8932 29 

365 1 20.5325 2.195 6.15333333 0.47 9094 27 

366 1 19.4775 2.1525 6.07333333 0.49 9088 26 

367 1 20.565 2.7125 6.42666667 0.495 9348 26 

368 1 19.9075 2.05 6.14 0.485 8880 27 

369 1 21.0325 2.2325 6.34666667 0.475 8624 30 

370 1 21.18 1.9575 6.34666667 0.475 9205 28 

371 1 20.63 1.5075 5.92666667 0.45 9341 26 

372 1 20.22 1.4425 5.79333333 0.445 9141 26 

373 1 19.6775 1.495 6.14 0.49 9077 26 

374 1 18.8675 1.4425 6.24666667 0.52 9289 24 

375 1 21.4975 1.365 6.07333333 0.445 10998 23 

376 1 21.195 1.195 6.10666667 0.45 10356 24 

377 1 21.515 0.825 5.87333333 0.425 10275 25 

378 1 21.4225 0.895 5.36666667 0.38 10461 24 

379 1 21.1175 1.18 4.72 0.33 10805 23 



   

UTC-UTI  48 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

380 1 22.2725 1.225 5.74666667 0.4 9981 27 

381 1 19.27 2.5025 4.63333333 0.355 10628 21 

382 1 28.0225 2.1725 6.32 0.355 10624 32 

383 1 23.13 1.2475 5.97333333 0.405 9747 29 

394 1 20.5275 1.0425 6.54 0.505 9240 27 

395 1 20.635 1.09 6.58666667 0.51 9558 26 

396 1 20.5675 1.14 6.51333333 0.505 10033 24 

397 1 22.2475 3.06 5.16 0.35 10338 26 

398 1 20.96 1.835 5.96666667 0.445 10229 24 

399 1 20.895 1.5325 6.11333333 0.46 9216 27 

400 1 20.8275 1.56 6.39333333 0.485 9748 25 

401 1 20.195 1.74 5.62666667 0.43 10007 24 

402 1 26.37 1.6175 6.08666667 0.36 10368 31 

403 1 26.7 2.2675 5.48 0.315 10252 32 

404 1 22.5025 1.2525 6.45333333 0.455 10138 27 

405 1 18.955 2.0625 5.12 0.405 10070 22 

406 1 23.3175 1.39 6.38 0.435 10699 26 

407 1 22.0625 1.04 6.19333333 0.44 10779 24 

408 1 20.3825 1.065 6.32666667 0.49 11049 22 

409 1 20.585 1.1825 6.06 0.46 11107 22 

410 1 17.595 1.7025 5.84666667 0.515 11664 17 

433 1 33.3225 0.7975 4.78 0.215 11235 37 

434 1 28.0025 0.6275 5.67333333 0.315 10766 32 

435 1 25.6725 0.6775 6.08666667 0.37 11133 28 

436 1 23.3775 0.8275 6.36 0.43 11229 25 

437 1 16.5925 1.1975 4.20666667 0.36 10580 18 

438 1 22.78 1.3575 6.24666667 0.43 10714 25 

439 1 21 1.2475 6.21333333 0.465 10102 25 

440 1 20.0225 1.58 6.04666667 0.475 10631 22 

441 1 21.75 1.6075 6.18 0.445 10241 25 

442 1 23.4 1.3875 6.18 0.415 10266 27 

443 1 25.0975 1.2825 6.26666667 0.395 11130 27 

465 3 35.755 1.2575 6.10666667 0.27 13734 32 

466 3 30.675 0.92 5.29333333 0.26 12349 30 

467 3 32.32 0.825 6.22666667 0.305 12093 33 

468 3 32.2575 0.9625 6.13333333 0.3 11776 34 

469 3 31.715 0.96 6.35333333 0.315 12922 30 



   

UTC-UTI  49 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

470 3 32.7875 1.0725 6.66666667 0.325 13036 31 

471 3 29.2025 0.79 5.22 0.27 12796 27 

472 3 31.3775 1.0175 5.95333333 0.295 12843 30 

473 3 28.82 0.78 5.9 0.32 12485 28 

474 3 26.8725 0.6825 5.76 0.33 13084 24 

475 3 29.2975 0.6625 6.04666667 0.325 12638 28 

482 3 23.9125 0.5775 5.70666667 0.37 14045 20 

483 3 16.7375 0.2875 3.73333333 0.305 12587 15 

484 3 21.4375 0.4275 4.84 0.335 10862 23 

485 3 25.585 0.6375 5.72 0.345 12847 24 

486 3 24.535 0.66 5.95333333 0.38 14034 20 

487 3 22.76 0.5725 5.29333333 0.355 14369 18 

488 3 19.57 0.465 4.18 0.305 13441 16 

489 3 18.1925 0.23 3.62666667 0.27 13011 16 

490 3 18.905 0.4575 4.54666667 0.35 12537 17 

491 3 17.2975 0.4125 4.68666667 0.4 13226 14 

492 3 13.3625 0.295 2.62 0.225 13317 10 

494 3 17.3275 1.01 4.62 0.39 12274 16 

495 3 19.4075 1.6075 5.82 0.465 14381 15 

496 3 19.04 2.1275 6.20666667 0.515 13130 16 

513 3 35.8825 0.7325 6.08666667 0.265 11737 38 

514 3 33.215 0.8175 6.31333333 0.3 13635 29 

515 3 28.3475 0.6175 6.22666667 0.345 13339 25 

516 3 24.9825 0.7125 6.02 0.375 14061 21 

517 3 26.16 1 5.1 0.295 13956 22 

518 3 33.4775 1.2225 5.68666667 0.26 12913 32 

519 3 36.3275 0.52 5.34666667 0.225 11468 39 

520 3 29.1475 0.5325 4.52 0.225 11354 31 

521 3 30.785 0.61 6.28666667 0.32 11361 33 

571 1 15.135 2.505 5.61333333 0.57 8100 22 

572 1 14.65 3.0275 5.46 0.57 8188 21 

573 1 15.065 3.1625 5.79333333 0.595 8498 21 

574 1 14.945 3.3575 5.86666667 0.61 7783 23 

575 1 13.71 2.47 6.28 0.72 7389 22 

576 1 16.5675 2.435 6.38666667 0.61 7500 26 

578 1 11.8475 2.675 2.56666667 0.25 6587 21 

579 1 24.135 1.845 5.14666667 0.32 7456 40 



   

UTC-UTI  50 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

580 1 10.9025 3.535 5.08666667 0.705 5537 23 

581 1 11.0875 2.975 5.56666667 0.775 5977 22 

582 1 11.2225 2.7425 5.53333333 0.76 6313 21 

583 1 11.53 3.1875 5.74 0.77 6531 21 

584 1 10.7975 2.6425 4.70666667 0.645 7176 17 

596 3 26.02 1.315 6.00666667 0.36 9557 33 

597 3 25.625 1.4025 5.37333333 0.32 8071 39 

598 3 24.165 1.3525 5.06666667 0.315 8799 34 

599 3 26.1625 1.5875 5.85333333 0.35 8659 37 

600 3 24.9875 1.3375 5.98 0.375 8858 35 

601 3 23.1175 1.6475 6.3 0.43 8311 34 

602 3 21.995 1.6325 6.26 0.45 8549 31 

603 3 21.38 2.0925 5.10666667 0.36 7444 35 

604 3 24.2775 1.8625 5.94666667 0.38 8559 35 

605 3 18.48 0.71 3.59333333 0.265 11956 18 

606 3 26.6375 1.41 6.01333333 0.355 10370 31 

607 3 28.355 1.285 5.64666667 0.305 10541 33 

625 3 16.3025 2.195 5.26 0.49 9065 21 

629 3 21.3075 1.7775 6.07333333 0.445 11670 21 

630 3 21.5625 1.195 5.88666667 0.425 11945 21 

631 3 24.3 1.575 6.01333333 0.385 12334 23 

632 3 26.775 1.3625 6.06 0.355 11694 28 

633 3 21.87 1.165 5.46666667 0.385 11098 23 

634 3 27.3425 1.835 5.53333333 0.31 10805 31 

635 3 30.3425 1.5525 6.14666667 0.32 11393 33 

636 3 28.1325 1.075 4.63333333 0.24 12892 26 

637 3 32.125 1.48 6.04 0.295 12477 31 

638 3 32.415 1.41 5.9 0.285 11283 35 

639 3 30.37 1.3725 5.28666667 0.265 10033 37 

640 3 33.03 1.48 5.97333333 0.28 9099 45 

641 3 33.165 1.4225 5.91333333 0.28 9375 44 

642 3 35.0275 1.4725 5.92 0.265 10364 42 

643 3 35.3425 1.4175 5.46 0.235 12835 34 

644 3 23.8425 0.405 3.06 0.16 13271 21 

671 3 24.97 1.42 5.88 0.365 10850 28 

672 3 23.585 1.5125 6.29333333 0.42 10613 27 

673 3 23.69 1.505 6.28 0.42 10742 26 



   

UTC-UTI  51 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

674 3 22.81 1.3025 6.24666667 0.43 11617 23 

675 3 25.44 1.2175 6.02666667 0.37 11542 26 

676 3 25.9 1.0875 5.80666667 0.35 11368 27 

677 3 29.24 0.74 4.79333333 0.245 13092 27 

678 3 33.08 1.0175 6.37333333 0.305 12499 32 

679 3 30.7 0.7175 5.81333333 0.295 12954 29 

680 3 29.2275 0.515 5.94666667 0.315 13472 26 

681 3 18.305 2.065 5.12 0.42 10327 21 

682 3 24.36 1.105 6.19333333 0.4 9728 30 

683 3 28.66 1.095 6.22 0.34 11669 30 

684 3 26.5 1.0475 5.83333333 0.34 12483 25 

685 3 21.9675 1.9175 5.41333333 0.375 10799 24 

686 3 25.3625 1.46 6.32666667 0.395 9709 32 

687 3 24.8275 1.1975 5.97333333 0.375 11079 27 

688 3 24.1075 1.205 5.97333333 0.385 12273 23 

689 1 22.165 1.095 6.03333333 0.425 13028 20 

690 1 20.5875 0.9875 5.72 0.43 11642 21 

691 1 18.59 1.08 5.89333333 0.495 11570 18 

692 1 20.1025 1.26 6.15333333 0.48 12588 18 

693 1 15.7775 0.9725 3.12 0.25 12238 14 

694 1 20.495 1.355 5.31333333 0.395 12538 19 

695 1 19.595 1.5675 5.70666667 0.45 11747 19 

696 1 19.9725 1.79 5.85333333 0.455 11274 21 

697 1 19.9425 1.99 6.03333333 0.475 11111 21 

698 1 19.4475 1.7275 5.72 0.455 11209 20 

699 1 17.895 1.6275 5.82 0.505 10448 20 

700 1 16.525 1.59 5.45333333 0.505 10256 18 

701 1 16.355 1.9875 5.87333333 0.56 10278 18 

702 1 12.08 2.3325 3.15333333 0.335 8344 16 

703 1 14.0475 2.6725 5.18666667 0.56 8865 18 

704 1 12.6525 2.3475 5.32 0.64 8170 18 

705 1 13.07 2.8475 5.38 0.63 9071 16 

706 1 11.0275 2.005 4.06666667 0.52 7909 16 

707 1 10.8175 2.3725 3.91333333 0.505 7591 16 

708 1 11.735 4.045 5.10666667 0.655 7530 18 

709 1 12.18 3.6475 5.31333333 0.665 7559 18 

710 1 13.925 3.2575 5.48666667 0.605 7886 21 



   

UTC-UTI  52 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

711 1 12.89 3.2025 3.55333333 0.37 7728 19 

712 1 14.5725 2.8875 5.32666667 0.555 8886 19 

713 1 15.57 2.5525 5.9 0.59 9194 20 

714 1 16.6525 2.0275 5.34 0.49 9295 21 

715 1 16.98 1.6925 5.10666667 0.455 10044 20 

716 1 17.6425 1.74 5.76666667 0.505 10204 20 

717 1 18.1975 1.405 5.69333333 0.485 10804 19 

740 3 18.0775 1.2375 6.16 0.535 14246 14 

741 3 17.415 1.3475 4.46 0.37 13087 15 

742 3 22.9375 1.185 6.1 0.415 13014 21 

743 3 23.0825 0.9675 5.73333333 0.385 12930 21 

744 3 21.095 0.6225 5.30666667 0.385 14367 17 

745 3 18.645 0.29 4.84 0.385 15116 13 

746 3 17.19 0.42 3.24666667 0.245 14804 12 

747 3 21.2825 0.185 4.29333333 0.29 14843 16 

748 3 21.4375 0.2725 4.2 0.28 14732 16 

749 3 16.745 -0.0525 3.14666667 0.24 15037 12 

750 3 19.5175 0.1425 2.98 0.19 14047 16 

751 3 22.61 -0.01 3.82 0.235 14166 18 

752 3 20.9025 -0.0425 3.97333333 0.265 15053 16 

753 3 19 0.3325 3.05333333 0.205 14418 15 

754 3 26.01 0.5675 5.8 0.345 14471 21 

755 3 25.475 0.5425 5.4 0.325 14307 21 

756 3 24.5975 0.41 5.22666667 0.32 14858 19 

757 3 21.4625 0.2225 4.33333333 0.29 15111 16 

758 3 19.7275 0.0275 3.24 0.215 15259 14 

759 3 27.0625 0.3275 6 0.345 15664 20 

760 3 20.8125 0.005 3.58666667 0.235 15050 15 

761 3 27.335 0.39 6.31333333 0.365 15375 21 

762 3 19.655 0.835 4.62 0.345 13264 17 

763 3 24.5625 0.405 5.52 0.345 12858 22 

764 3 24.925 0.3775 5.54666667 0.34 12742 23 

765 3 28.93 0.61 6.39333333 0.35 12074 29 

766 3 30.67 0.6025 6.16 0.315 13425 27 

767 3 27.96 0.8025 5.01333333 0.27 12506 27 

768 3 27.455 0.58 5.84 0.33 8736 39 

769 3 22.8325 0.425 5.56 0.375 9148 30 



   

UTC-UTI  53 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

770 3 24.47 0.85 6.14666667 0.395 10529 28 

771 3 22.3625 0.9175 6.03333333 0.42 12586 21 

772 3 21.005 1.0775 6.11333333 0.455 13403 18 

773 3 21.3275 1.0275 4.8 0.335 11605 22 

774 3 23.2875 0.9025 5.86666667 0.39 10723 26 

775 3 24.445 0.5325 5.87333333 0.375 11390 26 

776 3 26.8075 0.6475 6.24 0.365 13919 23 

777 3 25.235 0.7175 4.8 0.28 13733 22 

778 3 28.53 0.5675 5.78 0.315 11892 29 

779 3 28.0275 0.4425 5.76666667 0.32 11870 28 

780 3 29.8225 0.6625 6.22 0.33 13653 26 

781 3 25.3675 0.7675 4.82666667 0.285 12912 23 

782 3 27.0975 0.445 5.8 0.33 11944 27 

783 3 24.765 0.32 5.6 0.35 10122 30 

784 3 25.765 0.7975 5.59333333 0.335 11363 27 

785 3 25.2075 0.2975 5.78 0.355 10772 28 

786 3 25.04 0.4225 5.75333333 0.355 11715 25 

787 3 28.0075 0.52 6.17333333 0.345 13039 26 

788 3 24.2 0.43 3.84 0.22 13387 21 

789 3 26.295 0.36 5.46 0.32 13483 23 

790 3 25.0125 0.49 5.22666667 0.315 12283 24 

791 3 28.29 0.685 5.67333333 0.31 13465 25 

792 3 26.585 0.72 5.42 0.31 12718 25 

793 3 25.22 1.2175 5.38 0.325 11123 27 

794 3 27.6325 0.785 5.73333333 0.32 11420 29 

795 3 26.8675 0.685 5.54666667 0.315 12842 25 

796 3 26.825 0.4425 5.37333333 0.305 15071 21 

797 3 18.95 0.05 3.06666667 0.205 13966 15 

798 3 26.0025 0.6925 4.62666667 0.26 13565 23 

799 3 30.055 0.605 5.46666667 0.28 13053 28 

800 3 26.355 0.2975 5.15333333 0.295 14078 22 

801 3 27.435 0.38 5.11333333 0.28 14739 22 

802 3 23.8425 0.2125 4.46666667 0.27 14764 19 

803 3 23.9925 0.5475 4.32666667 0.26 14668 19 

804 3 29.9075 0.3275 5.97333333 0.31 11798 31 

805 3 27.765 0.2 4.94 0.265 13130 25 

806 3 25.6325 0.3275 4.6 0.265 13768 22 



   

UTC-UTI  54 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

808 3 29.7775 0.2675 5.40666667 0.275 9662 38 

809 3 28.065 0.525 5.91333333 0.33 10541 33 

810 3 26.965 0.555 5.72 0.33 9031 37 

811 3 30.5125 0.4525 5.26 0.26 11136 34 

812 3 26.615 0.33 4 0.21 13601 23 

813 3 33.83 0.34 5.5 0.25 14416 28 

814 3 35.4625 0.4025 5.7 0.25 12635 34 

815 3 39.19 0.375 6.00666667 0.24 10785 45 

816 3 36.3125 0.265 4.49333333 0.18 11324 40 

817 3 34.105 0.0975 4.21333333 0.175 13829 30 

818 3 34.33 0.02 4.86 0.21 11958 35 

819 3 28.355 -0.0775 3.14 0.14 8856 40 

820 3 27.8525 -0.2075 2.98666667 0.135 8972 38 

821 3 24.22 0.09 2.78 0.14 8804 34 

822 3 27.5875 0.5725 4.57333333 0.245 10213 33 

823 3 29.2275 0.4725 4.42 0.22 10651 34 

824 3 30.27 0.3025 4.33333333 0.205 10650 35 

825 3 25.36 0.0775 3.16 0.16 9552 32 

826 3 30.92 0.1425 4.92666667 0.24 10781 35 

827 3 28.8075 0.3875 4.61333333 0.235 8057 45 

828 3 27.5925 0.2025 3.94666667 0.2 7849 44 

829 3 31.0075 0.2525 4.95333333 0.24 8371 46 

830 3 32.6875 0.2125 4.74 0.215 9607 42 

831 3 35.04 0.705 4.50666667 0.185 9115 48 

832 3 38.875 0.5425 5.58 0.22 9010 55 

833 3 31.37 -0.015 3.21333333 0.13 11243 34 

834 3 32.63 0.1875 2.89333333 0.11 11611 34 

835 3 34.9125 0.2375 3.9 0.155 9130 48 

836 3 34.2 0.1525 4.14 0.17 9525 45 

837 3 29.04 0.255 3.75333333 0.18 10899 33 

838 3 35.3075 0.52 5.10666667 0.22 10082 44 

839 3 34.975 0.575 5.72666667 0.255 8811 50 

840 3 32.2225 0.76 5.58 0.265 9476 42 

841 3 34.1525 0.8675 5.24666667 0.235 10161 42 

842 3 31.9575 0.57 4.55333333 0.21 10212 39 

843 3 32.265 0.4975 4.58666667 0.21 9727 41 

844 3 31.685 0.5475 5.00666667 0.235 10070 39 



   

UTC-UTI  55 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

845 3 26.5375 0.33 3.64666667 0.185 11162 29 

846 3 28.4875 0.415 4.77333333 0.25 12900 26 

847 3 29.005 0.175 3.95333333 0.19 13785 25 

848 3 33.625 0.5975 4.06666667 0.17 9458 44 

849 3 34.85 0.5075 5.42666667 0.24 10311 42 

850 3 32.995 0.69 5.38 0.25 10107 41 

851 3 31.4675 0.6225 4.28666667 0.195 11881 32 

852 3 32.345 0.51 4.06 0.175 13536 29 

853 3 30.4875 0.345 3.98666667 0.185 11906 31 

854 3 34.6575 0.35 4.95333333 0.215 11130 39 

855 3 29.9975 0.185 4.5 0.22 11507 32 

856 3 23.115 -0.0775 3.62 0.215 13884 19 

857 3 23.3125 0.165 3.12666667 0.17 13504 20 

858 3 34.71 0.4925 5.15333333 0.225 10804 40 

859 3 30.805 0.265 4.66666667 0.225 11657 32 

860 3 21.985 -0.1475 3.14 0.18 14446 17 

861 3 26.7575 0.2225 3.24 0.155 13656 23 

862 3 34.8375 0.545 5.44666667 0.24 10861 40 

863 3 31.7325 0.525 5.48 0.265 12514 31 

864 3 22.9775 0.06 3.67333333 0.22 14686 18 

865 3 23.425 0.0975 3.92 0.235 15100 18 

866 3 29.7925 0.4975 4.98666667 0.25 13767 26 

867 3 25.745 0.3325 4.05333333 0.22 13987 22 

868 3 19.1275 -0.075 2.72 0.17 12094 18 

869 3 23.465 0.1825 4.39333333 0.27 12000 23 

870 3 22.0575 0.065 3.64666667 0.225 12875 20 

871 3 23.3925 0.2475 4.34 0.27 13288 20 

872 3 20.6075 0.1825 3.80666667 0.255 13569 17 

873 3 18.9275 0.01 3.60666667 0.26 13654 15 

874 3 19.765 0.3275 4.04666667 0.29 14205 16 

875 3 29.6825 1.375 6.18 0.325 10576 34 

876 3 32.585 0.95 6.2 0.3 10591 38 

877 3 20.84 0.0575 3.7 0.245 12763 19 

878 3 21.1625 0.3875 3.59333333 0.23 14001 17 

879 3 30.0825 0.835 6.19333333 0.325 12686 29 

880 3 27.91 0.79 5.98 0.335 11115 30 

881 3 23.7075 0.6075 4.94 0.31 11654 24 



   

UTC-UTI  56 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

882 3 23.195 0.6025 5.68666667 0.38 13000 21 

883 3 25.73 1.035 5.88 0.355 12876 24 

884 3 21.92 1.115 5.44666667 0.38 12191 21 

885 3 24.7525 1.665 5.34666667 0.33 12019 24 

886 3 24.375 1.49 6.06 0.39 12085 24 

887 3 22.2225 1.57 6.34 0.45 11939 22 

888 3 23.155 1.7 6.44 0.44 12260 22 

889 1 24.35 2.035 6.18 0.4 12515 23 

890 1 20.3725 1.75 6.27333333 0.485 11189 21 

891 1 21.375 1.9875 5.71333333 0.415 11660 21 

892 1 22.85 2.1975 6.29333333 0.435 11482 24 

893 1 22.1125 2.0925 5.79333333 0.405 10634 25 

894 1 24.645 2.1875 5.86 0.37 11141 26 

895 1 17.2075 2.1825 3.55333333 0.28 9859 20 

896 1 27.14 1.905 6.29333333 0.365 10572 31 

897 1 30.1475 1.825 5.98666667 0.31 11750 31 

898 1 31.8 1.5825 5.90666667 0.29 12297 31 

899 1 31.93 1.34 5.96666667 0.29 12776 30 

900 1 34.55 1.1725 5.48666667 0.245 13543 31 

901 1 28.775 1.3275 5.89333333 0.32 13076 26 

902 1 17.55 1.59 2.90666667 0.205 11244 18 

903 1 28.415 1.45 6.08666667 0.335 10962 32 

904 1 34.625 1.11 5.86 0.265 11599 37 

905 1 33.6575 1.0725 5.80666667 0.27 11678 35 

906 1 28.675 1.07 5.98 0.325 10886 32 

907 1 29.5225 1.0675 6.08666667 0.325 12041 30 

908 1 30.3975 0.935 6.01333333 0.31 12358 30 

909 1 14.5075 -0.0075 2.36 0.175 12871 12 

910 1 19.1075 0.235 3.62666667 0.26 13744 16 

911 1 26.8925 0.6475 5.52 0.315 13060 24 

943 1 12.99 0.5775 2.58 0.23 11848 12 

944 1 20.1875 1.8825 5.12 0.385 12432 19 

945 1 23.8925 1.5975 5.92 0.385 12705 22 

946 1 20.5475 1.365 5.62 0.42 12622 19 

947 1 23.7225 1.46 5.90666667 0.39 13229 21 

948 1 23.0175 1.28 6.00666667 0.41 13473 20 

949 1 19.91 2.235 4.29333333 0.31 13004 17 



   

UTC-UTI  57 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

950 1 22.0275 1.535 6.10666667 0.435 13715 18 

951 1 21.9375 1.0875 5.66666667 0.4 13892 18 

952 1 23.62 1.085 6.04 0.4 15011 18 

953 1 23.5875 0.9275 5.57333333 0.365 15724 17 

954 1 23.46 0.875 5.77333333 0.38 15644 17 

955 1 16.2325 0.325 2.68 0.195 13895 13 

956 1 19.5325 0.2125 4.44 0.33 15341 14 

957 3 22.805 0.885 5.74 0.39 13897 19 

958 3 25.1075 0.75 5.68 0.35 13089 23 

959 3 24.9725 1.13 5.04666667 0.305 13135 22 

960 3 24.6225 0.7925 5.29333333 0.325 14088 20 

961 3 20.6125 0.27 3.5 0.225 13621 17 

962 3 28.585 0.5525 5.43333333 0.29 13920 24 

963 3 26.0825 0.84 3.78 0.2 14113 22 

964 3 32.8075 0.37 4.95333333 0.225 12683 31 

965 3 30.4175 0.3225 3.89333333 0.18 13694 27 

966 3 26.695 -0.07 2.88 0.13 14029 22 

967 3 27.46 0.33 3.15333333 0.145 11579 29 

968 3 28.27 0.3725 4.32 0.22 9226 38 

969 3 29.185 0.395 4.03333333 0.195 10599 34 

970 3 30.94 0.4175 4.49333333 0.21 11597 33 

971 3 28.9375 0.62 3.66 0.17 9710 37 

972 3 31.325 0.5725 4.63333333 0.22 9080 43 

973 3 33.2975 0.535 5.52 0.255 9459 44 

974 3 33.88 0.5575 4.68666667 0.205 9439 45 

975 3 33.54 0.4475 4.54 0.2 9962 42 

976 3 32.49 1.025 4.94666667 0.23 8957 45 

977 3 33.665 0.8075 5.28666667 0.24 8817 48 

978 3 34.1025 0.5625 4.6 0.2 9395 45 

979 3 33.8125 0.585 5.67333333 0.26 10005 42 

980 3 28.8525 0.415 4.32 0.215 12336 28 

981 3 26.7525 1.0125 4.26666667 0.23 10820 30 

982 3 29.09 0.825 5.28 0.275 8315 44 

983 3 30.46 1 6.01333333 0.31 9925 38 

984 3 30.665 1.045 6.20666667 0.32 11182 34 

985 3 29.1275 0.86 6.16666667 0.335 10935 33 

986 3 32.4625 0.5325 5.77333333 0.275 13682 29 



   

UTC-UTI  58 
 
 

Location sensor1 sensor2 sensor3 sensor4 sensor5 sensor6 sensor7 

987 3 28.085 0.475 4.04 0.205 13181 25 

988 3 33.05 0.41 5.18666667 0.235 12007 34 

989 3 33.63 0.4525 5.28 0.24 12263 34 

990 3 35.1275 0.44 5.26666667 0.23 12053 36 

991 3 34.8025 0.49 5.50666667 0.245 11471 37 

992 3 30.7075 0.69 4.09333333 0.19 10894 35 

993 3 32.495 0.6675 5.71333333 0.27 10435 39 

994 3 31.8 0.8375 6.20666667 0.305 11177 35 

995 3 30.5625 0.81 6.06666667 0.31 12442 30 

996 3 31.7675 0.685 5.55333333 0.27 12917 30 

997 3 29.98 0.92 6.26666667 0.33 11681 31 

998 3 20.98 1.59 3.91333333 0.26 10010 25 

999 3 33.055 0.6525 5.44666667 0.25 10316 40 

1000 3 33.735 0.3475 5.22666667 0.235 10197 41 

1001 3 32.1625 0.2775 5.22 0.245 10030 40 

1002 3 30.69 0.5525 5.35333333 0.265 9678 39 

1003 3 33.2675 0.9 5.05333333 0.23 8844 47 

1004 3 33.5775 0.92 6.18666667 0.29 9494 44 

1005 3 33.7825 0.7375 5.65333333 0.26 9013 47 

1006 3 33.355 0.56 5.16666667 0.235 8613 49 

1007 3 31.4475 0.675 5.55333333 0.27 7573 52 

1008 3 32.22 0.8725 5.32 0.25 7718 53 
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